GUPTA MECHANICAL

IN THIS WEBSITE I CAN TELL ALL ABOUT TECH. TIPS AND TRICKS APP REVIEWS AND UNBOXINGS ALSO TECH. NEWS .............

Thursday, 16 June 2022

[Solution] Fake Plastic Trees Codeforces Solution | Codeforces Problem Solution 2022

D. Fake Plastic Trees
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

We are given a rooted tree consisting of n vertices numbered from 1 to n. The root of the tree is the vertex 1 and the parent of the vertex v is pv.

There is a number written on each vertex, initially all numbers are equal to 0. Let's denote the number written on the vertex v as av.

For each v, we want av to be between lv and rv (lvavrv).

In a single operation we do the following:

  • Choose some vertex v. Let b1,b2,,bk be vertices on the path from the vertex 1 to vertex v (meaning b1=1bk=v and bi=pbi+1).
  • Choose a non-decreasing array c of length k of nonnegative integers: 0c1c2ck.
  • For each i (1ik), increase abi by ci.

What's the minimum number of operations needed to achieve our goal?

Solution Click Below:-  CLICK HERE


Input

The first line contains an integer t (1t1000)  — the number of test cases. The description of the test cases follows.

The first line of each test case contains a single integer n (2n2105)  — the number of the vertices in the tree.

The second line of each test case contains n1 integers, p2,p3,,pn (1pi<i), where pi denotes the parent of the vertex i.

The i-th of the following n lines contains two integers li and ri (1liri109).

It is guaranteed that the sum of n over all test cases doesn't exceed 2105.

Output

For each test case output the minimum number of operations needed.

No comments:

Post a Comment