GUPTA MECHANICAL

IN THIS WEBSITE I CAN TELL ALL ABOUT TECH. TIPS AND TRICKS APP REVIEWS AND UNBOXINGS ALSO TECH. NEWS .............

Thursday, 4 August 2022

[Solution] Permutation Chain Codeforces Solution



B. Permutation Chain
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

A permutation of length n is a sequence of integers from 1 to n such that each integer appears in it exactly once.

Let the fixedness of a permutation p be the number of fixed points in it — the number of positions j such that pj=j, where pj is the j-th element of the permutation p.

You are asked to build a sequence of permutations a1,a2,, starting from the identity permutation (permutation a1=[1,2,,n]). Let's call it a permutation chain. Thus, ai is the i-th permutation of length n.

Solution Click Below:-  👉CLICK HERE👈

👇👇👇👇👇

 occupied

For every i from 2 onwards, the permutation ai should be obtained from the permutation ai1 by swapping any two elements in it (not necessarily neighboring). The fixedness of the permutation ai should be strictly lower than the fixedness of the permutation ai1.

Consider some chains for n=3:

  • a1=[1,2,3]a2=[1,3,2] — that is a valid chain of length 2. From a1 to a2, the elements on positions 2 and 3 get swapped, the fixedness decrease from 3 to 1.
  • a1=[2,1,3]a2=[3,1,2] — that is not a valid chain. The first permutation should always be [1,2,3] for n=3.
  • a1=[1,2,3]a2=[1,3,2]a3=[1,2,3] — that is not a valid chain. From a2 to a3, the elements on positions 2 and 3 get swapped but the fixedness increase from 1 to 3.
  • a1=[1,2,3]a2=[3,2,1]a3=[3,1,2] — that is a valid chain of length 3. From a1 to a2, the elements on positions 1 and 3 get swapped, the fixedness decrease from 3 to 1. From a2 to a3, the elements on positions 2 and 3 get swapped, the fixedness decrease from 1 to 0.

Find the longest permutation chain. If there are multiple longest answers, print any of them.

Input

The first line contains a single integer t (1t99) — the number of testcases.

The only line of each testcase contains a single integer n (2n100) — the required length of permutations in the chain.

Output

For each testcase, first, print the length of a permutation chain k.

Then print k permutations a1,a2,,aka1 should be an identity permutation of length n ([1,2,,n]). For each i from 2 to kai should be obtained by swapping two elements in ai1. It should also have a strictly lower fixedness than ai1.

No comments:

Post a Comment