GUPTA MECHANICAL

IN THIS WEBSITE I CAN TELL ALL ABOUT TECH. TIPS AND TRICKS APP REVIEWS AND UNBOXINGS ALSO TECH. NEWS .............

Tuesday, 6 September 2022

[Solution] Mainak and Interesting Sequence Codeforces Solution


B. Mainak and Interesting Sequence
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Mainak has two positive integers n and m.

Mainak finds a sequence a1,a2,,an of n positive integers interesting, if for all integers i (1in), the bitwise XOR of all elements in a which are strictly less than ai is 0. Formally if pi is the bitwise XOR of all elements in a which are strictly less than ai, then a is an interesting sequence if p1=p2==pn=0.

For example, sequences [1,3,2,3,1,2,3][4,4,4,4][25] are interesting, whereas [1,2,3,4] (p2=10), [4,1,1,2,4] (p1=112=20), [29,30,30] (p2=290) aren't interesting.

Here ab denotes bitwise XOR of integers a and b.

Find any interesting sequence a1,a2,,an (or report that there exists no such sequence) such that the sum of the elements in the sequence a is equal to m, i.e. a1+a2+an=m.

As a reminder, the bitwise XOR of an empty sequence is considered to be 0.

Input

Each test contains multiple test cases. The first line contains a single integer t (1t105) — the number of test cases. Description of the test cases follows.

Solution Click Below:-  👉CLICK HERE👈
👇👇👇👇👇

The first line and the only line of each test case contains two integers n and m (1n1051m109) — the length of the sequence and the sum of the elements.

It is guaranteed that the sum of n over all test cases does not exceed 105.

Output

For each test case, if there exists some interesting sequence, output "Yes" on the first line, otherwise output "No". You may print each letter in any case (for example, "YES", "Yes", "yes", "yEs" will all be recognized as positive answer).

If the answer is "Yes", output n positive integers a1,a2,,an (ai1), forming an interesting sequence such that a1+a2+an=m. If there are multiple solutions, output any.


Note
  • In the first test case, [3] is the only interesting sequence of length 1 having sum 3.
  • In the third test case, there is no sequence of length 2 having sum of elements equal to 1, so there is no such interesting sequence.
  • In the fourth test case, p1=p2=p3=0, because bitwise XOR of an empty sequence is 0.

No comments:

Post a Comment