GUPTA MECHANICAL

IN THIS WEBSITE I CAN TELL ALL ABOUT TECH. TIPS AND TRICKS APP REVIEWS AND UNBOXINGS ALSO TECH. NEWS .............

Thursday, 24 November 2022

[Solution] Binod CodeChef Solution | Solution CodeChef




Problem

A Binod is a person who is very good with bitwise operations. Help Alice solve the following problem and become a Binod.

You are given an array A of N elements. Process Q queries on this array, of the following form:

  • Each query contains 5 integers k, L_1, R_1, L_2, R_2. It is guaranteed that L_1 \leq R_1 \lt L_2 \leq R_2.
  • The answer to a query is the number of pairs (i, j) such that:
    • L_1 \leq i \leq R_1 and L_2 \leq j \leq R_2
    • A_i \oplus A_j has its k-th bit set. Here \oplus denotes the bitwise XOR operation.

Note: An integer x is said to have its k-th bit set if the (unique) binary representation of x contains 2^k. For example, 5 = 101_2 = 2^0 + 2^2 has its zeroth and second bits set but not the first, while 16 = 10000_2 = 2^4 has only its fourth bit set.

Input Format

  • The first line of input will contain a single integer T, denoting the number of test cases.
  • Each test case consists of multiple lines of input.
    • The first line of each test case contains two space-separated integers N and Q — the number of elements in array and number of queries, respectively.
    • The second line of each test case contains N space-separated integers A_1, A_2, \ldots, A_N.
    • The next Q lines describe queries. The i-th of these Q lines contains 5 space-separated integers k, L_1, R_1, L_2, R_2 — the parameters described in the statement.

Output Format

For each test case, output Q lines.The i-th of these lines should be the answer to the i-th query.


Explanation:

Test case 1: The array is A = [1, 2, 4, 3, 2].

  • Query 1: the ranges are [1, 3] and [5, 5], and k = 1. There are three pairs of (i, j)(1, 5), (2, 5), (3, 5).
    • A_1 \oplus A_5 = 1 \oplus 2 = 3 = 11_2 has its first bit set
    • A_2 \oplus A_5 = 2 \oplus 2 = 0 = 0_2 doesn't have its first bit set
    • A_3 \oplus A_5 = 4 \oplus 2 = 6 = 110_2 has its first bit set
    • So, the answer is 2.
  • Query 2: the ranges are [1, 2] and [3, 5], and now k = 2. This time, there are 6 pairs of indices. Of them, it can be verified that (1, 3) and (2, 3) are the ones that satisfy the given condition.

No comments:

Post a Comment