GUPTA MECHANICAL

IN THIS WEBSITE I CAN TELL ALL ABOUT TECH. TIPS AND TRICKS APP REVIEWS AND UNBOXINGS ALSO TECH. NEWS .............

Wednesday, 9 November 2022

[Solution] Distinct Neighbours CodeChef Solution



Problem

You are given an array A of length 2\cdot N.

You also have an empty array B. You are asked to do the following operation exactly N times.

  • Choose two distinct indices x and y (1\le x,y \le |A|);
  • Append (A_x - A_y) to the end of array B;
  • Delete the x^{th} and y^{th} elements from A and concatenate remaining elements without changing the order.

Find whether there exists a set of operations to get array B such that B_i \neq B_{(i+1)} (1 \leq i \lt N).

Input Format

  • The first line of input contains a single integer T, denoting the number of test cases.
  • Each test case consists of two lines of input.
    • The first line of each test case contains an integer N.
    • The second line of each test case contains 2\cdot N space-separated integers A_1,A_2,\ldots,A_{2\cdot N} representing the array A.

Output Format

For each test case, print on a new line the answer: YES if it is possible to obtain valid B, and NO otherwise.

Each character of the output may be printed in either uppercase or lowercase, i.e, the strings YesYES, yesyEs` will all be treated as identical.


Explanation:

Test case 1: No matter how we perform the operations, B=[0,0].

Test case 2:

  • In first operation, we can take x=2 and y=3. Now we append A_x-A_y=1-2=-1 at the back of B, and delete A_2 and A_3 from A. Now A=[1,2,3,3].
  • In second operation, we can take x=2 and y=1; append A_x - A_y = 2-1 = 1 at the back of B and delete A_2 and A_1. Thus, A = [3, 3] and B = [-1, 1].
  • In the third operation, we take x=1 and y=2; append A_x - A_y = 3-3 = 0 at the back of B and delete A_1 and A_2. Thus, A = [] and B = [-1, 1,0].

Thus, finally B=[-1,1,0]. There are no two consecutive elements in B that are equal.

Test case 3:

  • In first operation, we can take x=2 and y=3. Now we append A_x-A_y=1-2=-1 at the back of B, and delete A_2 and A_3 from A. Now A=[1,2].
  • In second operation, we can take x=2 and y=1; append A_x - A_y = 2-1 = 1 at the back of B and delete A_2 and A_1. Thus, A = [] and B = [-1, 1].

Thus, finally B=[-1,1]. There are no two consecutive elements in B that are equal.

No comments:

Post a Comment