GUPTA MECHANICAL

IN THIS WEBSITE I CAN TELL ALL ABOUT TECH. TIPS AND TRICKS APP REVIEWS AND UNBOXINGS ALSO TECH. NEWS .............

Wednesday, 14 December 2022

[Solution] Convert to permutation CodeChef Solution 2022



Problem

You are given an array A of size N. In one operation, you can:

  • Choose an index i (1\le i \le N) and increase A_i by 1.

Find the minimum number of operations required to convert the array A into a permutation of size N. If it is impossible to do so, print -1.

Note that a permutation of size N contains each element from 1 to N exactly once.

Input Format

  • The first line of input will contain a single integer T, denoting the number of test cases.
  • Each test case consists of multiple lines of input.
    • The first line of each test case contains the integer N — the size of the array.
    • The next line contains N space-separated integers, the elements of the array A.

Output Format

For each test case, output on a new line, the minimum number of operations required to convert the array A into a permutation of size N.


Solution Click Below:-  👉CLICK HERE👈
👇👇👇👇👇


If it is impossible to do so, print -1.


Explanation:

Test case 1: We can convert the array A into a permutation using 3 operations:

  • Operation 1: Choose i = 3 and increase A_i by 1. Thus, the array becomes A = [3, 1, 2, 2].
  • Operation 2: Choose i = 3 and increase A_i by 1. Thus, the array becomes A = [3, 1, 3, 2].
  • Operation 3: Choose i = 3 and increase A_i by 1. Thus, the array becomes A = [3, 1, 4, 2].

It can be shown that this is the minimum number of operations required to convert A into a permutation.

Test case 2: The given array cannot be converted into a permutation using any number of operations.

Test case 3: The given array is already a permutation. Thus, we require 0 operations.

Test case 4: We can convert the array A into a permutation using 3 operations:

  • Operation 1: Choose i = 1 and increase A_i by 1. Thus, the array becomes A = [3, 0, 1].
  • Operation 2: Choose i = 2 and increase A_i by 1. Thus, the array becomes A = [3, 1, 1].
  • Operation 3: Choose i = 3 and increase A_i by 1. Thus, the array becomes A = [3, 1, 2].

It can be shown that this is the minimum number of operations required to convert A into a permutation.

No comments:

Post a Comment